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Abstract

We consider two-dimensional Coulomb systems confined in a
disk with ideal dielectric boundaries, in particular the two-
component plasma when the coupling constant I' = 2. Under
these conditions the system is equivalent to a free fermion field,
the grand-partition function can be written as a Pfaffian and
therefore the model is exactly solvable. We obtain analytic
expressions for the grand potential, densities and correlations.
We confirm that the grand potential exhibits a universal finite-
size correction predicted in previous works.

Resumen

Estudiamos sistemas de Coulomb bidimensionales confinados
en un disco por dieléctricos ideales (condiciones de frontera
de Neumann para el potencial eléctrico). En particular estu-
diamos el plasma de dos componentes cuando la constante de
acoplamiento I' = 2. En estas condiciones el sistema es equi-
valente a una teoria de fermiones libres, la funcién de gran
particion se puede escribir como un Pfaffiano y asi se puede re-
solver exactamente el modelo. Obtenemos expresiones analiti-
cas para el gran potencial, las densidades y correlaciones de
carga en el sistema. Confirmamos ademds que el gran poten-
cial tiene una correccién de talla finita universal que habia sido
predicha anteriormente.
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1. Introduction. This paper is devoted to study a special class of
two-dimensional solvable models of classical Coulomb systems. Be-
side their intrinsic interest as solvable models, these systems are also
very useful to give hints on the properties of more complex systems of
charged particles (electrolytes, plasmas,...). Here we give a short re-
port on the study the two-dimensional two-component plasma (TCP)
confined in a disk of radius R with Neumann boundary conditions
imposed to the electric potential. This situation is obtained if the
exterior of the disk is made of a dielectric with vanishing dielectric
constant (an ideal dielectric). Further details can be found in Ref. [1].

The TCP is composed of two species of point particles with charges
+q. The coupling constant is I' = 8¢* = ¢*/kgT. In two-dimensions
the Coulomb potential is logarithmic. For the present case with Neu-
mann boundary conditions the Coulomb potential reads v(r,r’) =
—In|z — Z||R? — 27'|/a®R with z the complex coordinate of point r
and a is an irrelevant length scale.

Some time ago [2, 3, 4] it was shown that a Coulomb system con-
fined in a domain of size R and Euler characteristic y with conformally
invariant boundary conditions for the electric potential should exhibit
a logarithmic universal finite-size correction of the form (x/6)In R in
the grand potential and in the free energy. Neumann boundary con-
ditions being conformally invariant it is expected in our case to find a
correction (1/6) In R.

The TCP was solved two decades ago by Gaudin [5] and since then
much work has been done on that model [3, 4, 6, 7]. In particular it
was solved with several types of boundary conditions. However it was
not until very recently that the model could be solved for a system
near a plane wall made of an ideal dielectric [8]. The main difficulty
to solve the TCP for this special case of boundary conditions is that
the system must be mapped onto a four-component free fermion field
instead of a two-component free fermion field as in all other cases of
boundaries conditions.

In the next section we show how the system can be mapped onto
a free fermion field theory and therefore one can compute the grand
potential. In Sec. 3 we show the results for the grand potential and
the finite-size expansions.



2. Mapping onto a four-component free Fermi field. Starting first
with a lattice model with sites u;(v;) for positive (negative) particles
and position dependent fugacities ¢ the grand partition function is
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When I' = 2 the Boltzmann factor can be written as

a aR
e = (~1) det ( o ) 2)

R2 —U;vj Uj—Uj

It can be shown (see Refs. [1, 8]) that the grand partition function can
be written as a ratio of two Pfaffians = = Pf(A+ M)/ Pf(A) with the
antisymmetric matrices A and M defined by
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and M,, =0, (A1) = (A1), = 0. This is done introducing a set
of four anticommuting Grassmann variables for each site of the lattice.
Then, the grand partition function becomes = = (det(1 + K))'/? with
K = MA~!. In the continuum limit where the spacing the lattice goes
to zero one can recognize in K the inverse of the Dirac operator
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s and s’ label the sign of the particles and m is a rescaled fugacity.
To compute the grand potential one must find the eigenvalues of K or
equivalently the eigenvalues of the Dirac operator with the boundary
conditions ¢(V(R) + ey (R) = 0 for a point z = Re* on the
boundary of the disk.

3. Results. Solving the eigenvalue problem for K one finds the grand
potential in terms of the modified Bessel functions I,
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The large- R expansion of the grand potential is found to be
1
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with the bulk pressure Sp, = m?(In(2/mo)+1) and the surface tension
fy = m/4. The diameter of the particles o is the cutoff of the theory:
in the continuum limit ¢ — 0 the bulk pressure is divergent due to
the collapse of particles of opposite sign [6]. The system shows indeed
the expected logarithmic finite-size correction (1/6) In R.

4. Conclusion. We showed how the classical TCP in a disk with
ideal dielectric boundary conditions can be mapped onto a quantum
free fermionic field theory and we solved it. The grand potential was
calculated and it exhibits universal finite-size corrections predicted in
previous works [2, 3, 4]. By using the same method, computing the
propagator of the equivalent fermionic field theory, one can also com-
pute the density and correlations functions of the classical Coulomb
system. The reader can consult Refs. [1, 8] for further details on these
calculations and the behavior of the correlation functions. This work
is supported by COLCIENCIAS and BID under project # 1204-05-
10078.
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